

Overview

- Motivation
- Ray-Tracing Algorithm
 - Ray generation, traversal, intersection, shading
- Rasterization Pipeline
- Ray-Tracing versus Rasterization
 - Benefits & Drawback
 - Open Issues

Shading

- Shading after visibility has been computed
 - No overhead due to overdraw
 - Every ray is shaded exactly once
- Can generate new ray
 - Shadow, reflection, transmission, ...
 - Need to deal with recursion
- Direct use of Shading Languages
 - RenderMan (e.g. BMRT) and others

Ray-Tracing versus Rasterization

- Occlusion Culling & Logarithmic Complexity
 - RT never even looks at invisible geometry
 - RT traversal allows for efficient searching O(log N)
 - Rasterization shows linear behavior
 - RT wins for complex scenes
 - However: Rasterization can be improved
 - Early Z-buffer test (e.g. ATI 's Hyper-Z)
 - HW-assisted occlusion test
 - Requires similar index structure

Ray-Tracing versus Rasterization

- Flexibility
 - Handling individual or unstructured groups of rays
 - Image-based rendering & RenderCache
- Correctness & Image Quality
 - Rasterization relies on approximations
 - Environment maps, shadow maps, ...
 - Ray-Traced images are "correct" by default
 - Shadows, reflections, refractions, ...
 - Use of approximations is optional

Ray-Tracing versus Rasterization

- Simple and Efficient Shading
 - No overhead
 - Direct use of Shading Languages
- Parallel Scalability
 - Ray-Tracing is "embarrassingly parallel"
 - Should scale well with hardware
 - Initial hardware cost is higher than for rasterization

Ray-Tracing versus Rasterization

- Coherence
 - Key to efficient rendering
 - Rasterization: Object coherence
 - Efficient rasterization
 - Ray-Tracing: Ray coherence
 - Improved caching & reduced bandwidth
 - Allows for data parallel computation
 - RT has much more coherence than assumed

Open Research Problems

- Hardware
 - What is the best HW architecture?
- Dynamic Scenes
 - Optimized rebuild or transformation of index?
- API
 - Better alternative to OpenGL´s "push model"?
- Can RT eventually replace rasterization?

